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ABSTRACT

I The solution of a set of linear equations L a —d , where L ism m  in in

an ath order Hermitian Toeplitz matrix and the elements of d possess a

Hermitian synmietry, is considered. A specialized algorithm is developed

for this case which solves for a in approximately l.5m
2 
“operations,”

whereas the Rermitian case of an algorithm developed by Zohar solves for

in approximately 2m “operations .” An “operation” is used here to

denote one addition and one multiplication. A fur ther  reduction in

computational requirements is shown in case L and d are real. As with

Zohar ’s algorithm, the specialized algorithm requires that all principal

minors of L be nonzero.
in

KEY WORDS AND PHRASES : Linear algebra , linear equations , Toeplitz matrix ,

I computer prograsmiing
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1. Introduction

•
1 

‘ 

Consider the set of linear equations

L s — dm m  in. (1)

Zohar (1] makes use of the Trench algorithm 12], [3] to develop an

efficient algorithm for solving (1) when s~, d~ are mxl matrices and

¶ L is a non—Hermitian mth—order Toeplitz matrix. In this paper , an

efficient algorithm i. developed for solving (1) when L
~ 

is a Hermitian

Toeplitz matrix and d satisfies
m

d — d  , (2)
in m

where the symbol is used to denote the reversed ordering of the

elements of d , i.e., (d ) , ., — (d  ) 
~~~ 1 

and * denotes complex conjugate.
m i n Lp J. in lW’ .~~~

Such a specialized case can arise, for example, in the design of digital

filters , as discussed in [4]. The following example serves to illustrate

how such a system of equations can arise.

EXAMPLE. Let c t( t ) ,  8(t), y(t) be jointly wide—sense stationary complex—

valued stochastic processes with ~(t)~~ (t)+y(t), where E(B(t)y*(s)}.0

for all real t and a and E{’} denotes statistical expectation. On the

basis of the observation vector a (k), a
~
(k) [a(k) a(k—l) ”~~(k m+l)],

where the symbol denotes matrix transpose , it is desired to compute a
4’ 

1
linear minimum mean -square error (MMSE) estimate of B(k—p), i.e., it is

desired to minimize the quantity E{Ia a
~
(k)—$(k— p)

~
2) with respect to

IL is easily shown that the desired solution, s~, satisf ies (1), with

and ~~~~~~~~~~~~~~~~ Since c*(t) is wide—sense

,~~~
‘ stationary, L Is a Herinitian Toepiitz matrix. With p.’(m+l)/2 , it is

easily seen that (2) ii satisfied since 0(t) and y ( t )  are jointly wide—sense

~ A ~~~~~~~~~~~~~~~~~~~~~~~~ - ~ - 1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- —
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stationary. . 

* - * -
A useful consequence of the assumptions that d —d and L —L is thata a a a

* Define Em to be the m~an exchange matrix of Zohar (3], i.e.,

E a —a for any mxl matrix a . Note that E E —I , where I is the ~~~m m  in in m m  in in

identity matrix. Since L is persymmetric (3] ,  E L E •L . Since
in m a i n  in

* * *  * *d —d , from (1) we have E L (E E )s —L S , so that L 5 —L 8 , i.e.,in in m m  m m  m a i n  m a m a
- *s — s .
in in

The specialized algorithm developed in Section 3 of this paper solves

• (1) with d satis fying (2) in approximately l .55%2 complex “operat ions , ”

whereas the Hermitian case of Zohar ’s algorithm [1] uses approximately

/ ~ 2m2 complex “operations .” An “operation” is used here to denote one

addition and one multiplication . In case L , d  (and hence 5 )  are real ,

the results of Section 3 can be used to solve (1) in approximately l.25m2

real multiplications and l..5m 2 real additions .

Both Zohar ’s algorithm [1] and the specialized algorithm developed

in Section 3 make use of Phase 1 of the Trench algorithm [l ]— [3 ] .  Rather

than review the results necessary for the development of Section 3, it is

assumed that the reader is familiar with the work of Zohar [3].

2. Preliminaries

Since the techniques used in this paper are inherently related to

those used by Zohar [1], an attempt is made to follow the same notational

• conventions. Greek letters are used for scalars , capital letters for

square matrices, and lower—case letters for column matrices . Subscripts

used on matrices are used to denote the number of elements in one column

of the matrix.

Since Phase 1 of the Trench algorithm requires that all principal

minors of 1. be nonzero , it is assumed that (1) has been normalized so

that L has ones along its main diagonal .

) 
_ _ _ _ _ _
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• 3. The Specialized Algorithm

F Consider the system of equations 
~~~~~~~~ 

where L
~ 

is an mth order
I normalized Hermitian Toeplitz matrix and dmU d m~ 

so that d
~ 

may be

* *written as d R ~~ 1•~~• 
~~ ~. ~2 c+l~ 

for in odd and
2 2

- * *r d — ( ~. ~ ~ 
] for in even. For in even or odd we may write

IS 2 1 1

di+2 R 1+3 di ~~j +3~~~’ 
for t—l ,2 ,”~~,m—2 where (x] denotes the largest

integer less than or equal to x. The Hermitian Toeplitz nature of L
~

enables us to write

r~ 
ri+ll ~~i+l r i+ll

L1~ 2— 1  
* I L~N Lij+1 Lj+1J I~.

i+1 1 
] 

(3)

where ;j+j— (p
1P2

...pi+j](O< i.cm_2). Clearly, (3) may be rewritten as

r1
I * 

~ 
r1~ 1

L ‘ r Li+2 1 I j

L 

r1+1 1

l e i
Defining Lj+2 ~I+2 —dj+2 (l< i<m—2), we have Lj+2 5i+2 a

ij

uu 0~.
e~

where 1+3 
— and ~~ is an ixl column matrix of zeros .

~ 2~~
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Def in ing  B
j +2

uu’Lj~~2 , we obtain

1 •  0 81

- 
- 

~i+2 Si + B~~ 2 O~ (4)

0 01

Since the inverse of a Hermitian persymmetric matrix is a Hermitian

persynimetric matrix (3] , Bj +2 may be expressed in the form

~i+2 Ai+l [1 

ei+
l] 

- A i+l 
~i+l e

i+l]
e~41 Mt+l e~4 1 1.

Letting f~ — [I~ O~ ] e1+1 , we may write

B1~ 2— A~~ 1 (5)

Iii-
e
i+1 1

Substituting (5) into (4) we obtain the result

~i+2 
1.[01j4 c~iei([l~ 1 +~ ~ e;’ [ei+i]} 

. ( 6 )

in order to make use of this result , we apply the recursive relationships

for Phase 1 of the Trench algorithm [1]:

Initial values: e
1 ~~l’

I

, ~~~~~~~~‘—•—•-—•—••- — ••—•• —-— - — 
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Recursive relationships: ~~~~ —P
~+1—e1

F
1’ e

1+fl1
A
~ 

e~

e — A — A — n  A 1
i+l ‘ i+l i i i

—l
fl 1 A1

Finally, Phase 1 of the Trench algorithm and (6) may be combined by

noting that

~~.
— 

~~~~. 
(7)

and — *

~1 ~l~~ l

* * 
. (8)

-
~~~~~ ~l

-.p
1 ~

]

*• An immediate consequence of (6),  (7 ) ,  and (8) is that 5i+2 5i+2

since Aj+1 is real—valued. Consec~uent ly , there are two sources of

increased computational speed in the specialized algorithm: (1) 
~i+2 

need

only be computed for i l ,3,5,... ,m—2 when in is odd and for i 2 ,4,6,...,in—2
when m is even , and (ii) approximately half ((~~~]) of the elements of -

need to be computed using (6), the remaining elements being obtained

from the relationship 
~~+2~~i+2

• The following is a summary of the

r ~ algorithm.

1
PROBLEM FORMULATION: L a —d ,L -m m  in in *

r~~1 
L
~_1

r 1 1P 1P 2
...P

11 (lci<m—l ) ,

d i+2~~
[ 

[ 1+3 ] ~i ~~~~~~~~ , 
~~~ 

?

i
-
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n I  ~~~~
- . Initial values: e

1— 
—p 1 

, A1’m 1— 1p 11
2

r *

I~ 1~1~1.
• ~i ~l ‘~ 2~~ 1 

~ * *
L~i ~~1 ~1

Recursive relations : Compute n1
, e1+1, and Aj+i for i 1,2, -., m—2.

• Compute O~ and for i — 1,3,5,... , m—2 for in odd and

1 — 2,4,6,..., m—2 for in even.
—

— 
[ej + n~ A~~e~

e
~+iL i  I —l- ( LniA i

Aj+1.A i- I n j I
2 A

~~

O 1~~~~~~3
_ r

1
s
1

1 2 ]

5i÷f [!~] 
+ A;~ l o

ij [
~~ +~~

+ e~e;1

Making use of the fact that only f~~~] elements of 
~i+2 

need be

2 computed , the above algorithm requires approximately l.5m2 additions and
2 21.5in multiplications for the solution of This compares with 2m for

the Heruiltian case of Zohar’s algorithm [1].

In case L , d (and hence s ) are real , an even further reduction inin in in
~. b~~

computational requirements results. For this case (6) may be rewritten as

e
1~1

8i+f [:~] 
+ A~~~1 OiI[e

i+i ] 

+ 

[1 }J ~ (9)

S 

,
~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~

• •  • 
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and the computation of r1s1 in the expression for 6~ may be computed as

• I ; .  - 1/2
r1s~~~ E 

~~~~~~~~~~~~~~~~ (10)

for I even and

i—i
- 2
r~s~ —~~ 1 (sj)~~(P P i+i &)+(sj) ~~~~ (11)

2 2

• for I odd. Making use of these expressions, the specialized algorithm

requires approximately l.5m
2 
additions and l.25m

2 
multiplications. A

sligh t ly d i f f e ren t  form of (9) can be easily obtained as

rol 1

~i+2 I ~~~~~ I + ~i e~+e1 . (12)

[oJ 
A
1

—~1 
~

• This final expression (12) is slightly more efficient than ( 9 ) .  A FORTRAN

• 
• routine for the specialized algorithm making use of (lO)—(12) is presented

in [5].

EXAMPLE . Let p — (i+1)~~ for  i—l ,2 , .” , in—i and

for i— 1 ,2 ,”~~, [
~~~~

-]. A FORTRAN routine , called TPSLV , based on2

the symmetric case of [1] was written for a timing comparison with the

FORTRAN routine , called SYMM , presented in [5]. The time needed (in

seconds) for each routine to compute a for this example with

inE {lO ,50,100,500} is indicated in the following table.

M TPSLV SY?*1
• 10 .005 .005

50 .089 .057

100 .343 .217

500 8.266 5.233

The above results, obtained on a CDC 6400 computer , agree with the

computational considerations presented above.

- 
- 
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4. ConcludIng Remarks

An algorithm has been developed for the solution of a specialized

set of Toepiitz linear equations that arise in linear filtering appli-

cations . The savings in computational requirements of the new algorithm

- • 
• over the results of Zohar [1] are approximately 25% for the Hermitian

case and 37.5% for the real case. Finally , it is noted that the

techniques used In developing the specialized algorithm can indeed be

-• applied to the general case treated by Zohar [1]; however , such a

development results in an algorithm having no computational advantage

over the generalized algorithm of (1].
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